Le Machine learning (apprentissage automatique) est la technologie la plus ancienne et la plus simple. Elle s’appuie sur un algorithme qui adapte lui-même le système à partir des retours faits par l’humain. La mise en place de cette technologie implique l’existence de données organisées. Le système est ensuite alimenté par des données structurées et catégorisées lui permettant de comprendre comment classer de nouvelles données similaires. En fonction de ce classement, le système exécute ensuite les actions programmées. Il sait par exemple identifier si une photo montre un chien ou un chat et classer le document dans le dossier correspondant.
Après une première phase d’utilisation, l’algorithme est optimisé à partir des feedbacks du développeur, qui informent le système des classifications erronées et lui indiquent les bonnes catégories.
Le Deep learning (apprentissage profond) n’a pas besoin de données structurées. Le système fonctionne à partir de plusieurs couches de réseaux neuronaux, qui combinent différents algorithmes en s’inspirant du cerveau humain. Ainsi, le système est capable de travailler à partir de données non structurées.
Cette approche est particulièrement adaptée pour les tâches complexes, lorsque tous les aspects des objets à traiter ne peuvent pas être catégorisés en amont. Le système du Deep learning identifie lui-même les caractéristiques discriminantes. Dans chaque couche, il recherche un nouveau critère spécifique de l’objet, qui sert de base pour décider de la classification retenue pour l’objet à la fin du processus.
Important : avec le Deep learning, le système identifie lui-même les caractéristiques discriminantes des données, sans avoir besoin d’une catégorisation préalable. Le système n’a pas besoin d’être entraîné par un développeur. Il évalue lui-même le besoin de modifier le classement ou de créer des catégories inédites en fonction des nouvelles données.
Tandis que le Machine learning fonctionne à partir d’une base de données contrôlable, le Deep learning a besoin d’un volume de données bien plus considérable. Le système doit disposer de plus de 100 millions d’entrées pour donner des résultats fiables.
Par ailleurs, la technologie nécessaire pour le Deep learning est plus sophistiquée. Elle exige plus de ressources IT et s’avère nettement plus coûteuse que le Machine learning : elle n’est donc pas intéressante, du moins à l’heure actuelle, pour une utilisation de masse par les entreprises.